feature_importance
feature_importance(model, dataloader, importance_score, importance_score_kwargs={}, batch_size=32, num_workers=0)
Return feature importance scores
Arguments
- model: kipoi model (obtained by
kipoi.get_model()
) - dataloader: instantiated kipoi dataloder (obtained by
kipoi.get_dataloader_factory()(**dl_kwargs)
ormodel.default_dataloader(**dl_kwargs)
- importance_score (
str
orImportanceScore
): which importance score to use - importance_score_kwargs (dict): kwargs passed to the importance score
- batch_size: run scoring and data-loading in batches
- num_workers: number of workers for parallel data-loading. Passed to
dataloader.batch_iter(...)
Returns
(dict of np.arrays)
: dataset returned by the dataloader (dict with keys inputs
, targets
, metadata
)
but with an additional importance_scores
key