DeepFlyBrain
Authors: Ibrahim Ihsan Taskiran , Jasper Janssens , Sara Aibar , Stein Aerts
License: MIT
Contributed by: Ibrahim Ihsan Taskiran , Jasper Janssens , Sara Aibar , Stein Aerts
Cite as: TBA
Specialized deep learning model on Kenyon cells, T neurons, and glia chromatin accessibility data of adult fly brain
kipoi env create DeepFlyBrain
source activate kipoi-DeepFlyBrain
kipoi test DeepFlyBrain --source=kipoi
kipoi get-example DeepFlyBrain -o example
kipoi predict DeepFlyBrain \
--dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
-o '/tmp/DeepFlyBrain.example_pred.tsv'
# check the results
head '/tmp/DeepFlyBrain.example_pred.tsv'
kipoi env create DeepFlyBrain
source activate kipoi-DeepFlyBrain
import kipoi
model = kipoi.get_model('DeepFlyBrain')
pred = model.pipeline.predict_example(batch_size=4)
# Download example dataloader kwargs
dl_kwargs = model.default_dataloader.download_example('example')
# Get the dataloader and instantiate it
dl = model.default_dataloader(**dl_kwargs)
# get a batch iterator
batch_iterator = dl.batch_iter(batch_size=4)
for batch in batch_iterator:
# predict for a batch
batch_pred = model.predict_on_batch(batch['inputs'])
pred = model.pipeline.predict(dl_kwargs, batch_size=4)
library(reticulate)
kipoi <- import('kipoi')
model <- kipoi$get_model('DeepFlyBrain')
predictions <- model$pipeline$predict_example()
# Download example dataloader kwargs
dl_kwargs <- model$default_dataloader$download_example('example')
# Get the dataloader
dl <- model$default_dataloader(dl_kwargs)
# get a batch iterator
it <- dl$batch_iter(batch_size=4)
# predict for a batch
batch <- iter_next(it)
model$predict_on_batch(batch$inputs)
pred <- model$pipeline$predict(dl_kwargs, batch_size=4)
docker pull kipoi/kipoi-docker:deepflybrain-slim
docker pull kipoi/kipoi-docker:deepflybrain
docker run -it kipoi/kipoi-docker:deepflybrain-slim
docker run kipoi/kipoi-docker:deepflybrain-slim kipoi test DeepFlyBrain --source=kipoi
# Create an example directory containing the data
mkdir -p $PWD/kipoi-example
# You can replace $PWD/kipoi-example with a different absolute path containing the data
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:deepflybrain-slim \
kipoi get-example DeepFlyBrain -o /app/example
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:deepflybrain-slim \
kipoi predict DeepFlyBrain \
--dataloader_args='{'intervals_file': '/app/example/intervals_file', 'fasta_file': '/app/example/fasta_file'}' \
-o '/app/DeepFlyBrain.example_pred.tsv'
# check the results
head $PWD/kipoi-example/DeepFlyBrain.example_pred.tsv
https://apptainer.org/docs/user/main/quick_start.html#quick-installation-steps
kipoi get-example DeepFlyBrain -o example
kipoi predict DeepFlyBrain \
--dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
-o 'DeepFlyBrain.example_pred.tsv' \
--singularity
# check the results
head DeepFlyBrain.example_pred.tsv
Defined as: .
Doc: Data-loader returning one-hot encoded sequences given genome intervals
Authors: Ibrahim Ihsan Taskiran
Type: None
License: MIT
Arguments
intervals_file : intervals file bed3
fasta_file : Reference genome FASTA file path.
ignore_targets (optional): if True, don't return any target variables
- python=3.7
- h5py=2.10.0
- keras=2.2.4
- tensorflow=1.14.0
- pip=21.0.1
- python=3.7
- cython=0.29.23
- bioconda::pybedtools=0.8.2
- bioconda::pysam=0.16.0.1
- bioconda::pyfaidx=0.6.1
- numpy=1.19.5
- pandas=1.1.5
- kipoiseq