labranchor
Authors: Joseph M. Paggi , Gill Bejerano
License: CC BY-NC 4.0
Cite as: https://doi.org/10.1101/185868
Type: keras
Postprocessing: None
Trained on: High confidence set of branchpoints reported by Mercer et. al. 2015. Chromosome 1 was used for testing, chromosomes 2, 3, 4 for model selection and the remaining data were used for model training.
LaBranchoR (LSTM Branchpoint Retriever) uses a LSTM network built with keras to predict the position of RNA splicing branchpoints relative to a three prime splice site. Precisely evaluating LaBranchoR was challenging due to pervasive noise in the experimental data, but as we show in our paper, we estimate that LaBranchoR correcty predicts a branchpoint for over 90% of 3\''ss. Github link https://github.com/jpaggi/labranchor.
LaBranchoR predicts RNA splicing branchpoints using a Long Short-Term Memory network.
Description
A model to predict branchpoint from sequence by Paggi et al.. 2017(http://bejerano.stanford.edu/labranchor/).
Input of the model is one-hot-encoded 70bp sequence upstream a 3' acceptor site. Output are scores per basepair the probability to be a branchpoint.
kipoi env create labranchor
source activate kipoi-labranchor
kipoi test labranchor --source=kipoi
kipoi get-example labranchor -o example
kipoi predict labranchor \
--dataloader_args='{"fasta_file": "example/fasta_file", "gtf_file": "example/gtf_file", "length": 70}' \
-o '/tmp/labranchor.example_pred.tsv'
# check the results
head '/tmp/labranchor.example_pred.tsv'
kipoi env create labranchor
source activate kipoi-labranchor
import kipoi
model = kipoi.get_model('labranchor')
pred = model.pipeline.predict_example(batch_size=4)
# Download example dataloader kwargs
dl_kwargs = model.default_dataloader.download_example('example')
# Get the dataloader and instantiate it
dl = model.default_dataloader(**dl_kwargs)
# get a batch iterator
batch_iterator = dl.batch_iter(batch_size=4)
for batch in batch_iterator:
# predict for a batch
batch_pred = model.predict_on_batch(batch['inputs'])
pred = model.pipeline.predict(dl_kwargs, batch_size=4)
library(reticulate)
kipoi <- import('kipoi')
model <- kipoi$get_model('labranchor')
predictions <- model$pipeline$predict_example()
# Download example dataloader kwargs
dl_kwargs <- model$default_dataloader$download_example('example')
# Get the dataloader
dl <- model$default_dataloader(dl_kwargs)
# get a batch iterator
it <- dl$batch_iter(batch_size=4)
# predict for a batch
batch <- iter_next(it)
model$predict_on_batch(batch$inputs)
pred <- model$pipeline$predict(dl_kwargs, batch_size=4)
docker pull kipoi/kipoi-docker:sharedpy3keras2tf2-slim
docker pull kipoi/kipoi-docker:sharedpy3keras2tf2
docker run -it kipoi/kipoi-docker:sharedpy3keras2tf2-slim
docker run kipoi/kipoi-docker:sharedpy3keras2tf2-slim kipoi test labranchor --source=kipoi
# Create an example directory containing the data
mkdir -p $PWD/kipoi-example
# You can replace $PWD/kipoi-example with a different absolute path containing the data
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:sharedpy3keras2tf2-slim \
kipoi get-example labranchor -o /app/example
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:sharedpy3keras2tf2-slim \
kipoi predict labranchor \
--dataloader_args='{'fasta_file': '/app/example/fasta_file', 'gtf_file': '/app/example/gtf_file', 'length': 70}' \
-o '/app/labranchor.example_pred.tsv'
# check the results
head $PWD/kipoi-example/labranchor.example_pred.tsv
https://apptainer.org/docs/user/main/quick_start.html#quick-installation-steps
kipoi get-example labranchor -o example
kipoi predict labranchor \
--dataloader_args='{"fasta_file": "example/fasta_file", "gtf_file": "example/gtf_file", "length": 70}' \
-o 'labranchor.example_pred.tsv' \
--singularity
# check the results
head labranchor.example_pred.tsv
Defined as: .
Doc: LaBranchoR predicts RNA splicing branchpoints using a Long Short-Term Memory network
Type: Dataset
License: MIT
Arguments
fasta_file : Reference genome sequence
gtf_file : file path; Genome annotation GTF file
length : length of considered candidate branchpoint region, upstream of 3'ss
- pip=20.2.4
- python=3.7
- bioconda::pysam=0.15.3
- tensorflow==1.15
- keras==2.1.6
- h5py==2.9.0
- kipoi
- protobuf==3.20
- python=3.7
- bioconda::pysam=0.15.3
- pip=20.2.4
- numpy