Model name | Version | Authors | Contributed by | Type | Cite as | License | Training procedure |
---|---|---|---|---|---|---|---|
Model name | Version | Authors | Contributed by | Type | Cite as | License | Training procedure |
AttentiveChrome/E003 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E004 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E005 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E006 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E007 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E011 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E012 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E013 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E016 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E024 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E027 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E028 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E037 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E038 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E047 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E050 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E053 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E054 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E055 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E056 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E057 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E058 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E061 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E062 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E065 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E066 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E070 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E071 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E079 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E082 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E084 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E085 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E087 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E094 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E095 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E096 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E097 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E098 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E100 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E104 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E105 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E106 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E109 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E112 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E113 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E114 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E116 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E117 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E118 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E119 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E120 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E122 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E123 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E127 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT | |
AttentiveChrome/E128 | 0.1 | Ritambhara Singh et al. | Jack Lanchantin et al. | pytorch | https://doi.org:/10.1101/329334 | MIT |
Attentive Chrome Kipoi
Dependency Requirements
- python>=3.5
- numpy
- pytorch-cpu
- torchvision-cpu
Quick Start
Creating new conda environtment using kipoi
kipoi env create AttentiveChrome
Activating environment
conda activate kipoi-AttentiveChrome
Command Line
Getting example input file
Replace {model_name} with the actual name of model (e.g. E003, E005, etc.)
kipoi get-example AttentiveChrome/{model_name} -o example_file
example: kipoi get-example AttentiveChrome/E003 -o example_file
Predicting using example file
kipoi predict AttentiveChrome/{model_name} --dataloader_args='{"input_file": "example_file/input_file", "bin_size": 100}' -o example_predict.tsv
This should produce a tsv file containing the results.
Python
Fetching the model
First, import kipoi:
import kipoi
Next, get the model. Replace {model_name} with the actual name of model (e.g. E003, E005, etc.)
model = kipoi.get_model("AttentiveChrome/{model_name}")
Predicting using pipeline
prediction = model.pipeline.predict({"input_file": "path to input file", "bin_size": {some integer}})
This returns a numpy array containing the output from the final softmax function.
e.g. model.pipeline.predict({"input_file": "data/input_file", "bin_size": 100})
Predicting for a single batch
First, we need to set up our dataloader dl
.
dl = model.default_dataloader(input_file="path to input file", bin_size={some integer})
Next, we can use the iterator functionality of the dataloader.
it = dl.batch_iter(batch_size=32)
single_batch = next(it)
First line gets us an iterator named it
with each batch containing 32 items. We can use next(it)
to get a batch.
Then, we can perform prediction on this single batch.
prediction = model.predict_on_batch(single_batch['inputs'])
This also returns a numpy array containing the output from the final softmax function.