BPNet_Dmel_OreR_2to3hr_ZDTBCG
BPNet model predicting the ChIP-nexus profiles of Zelda, Dorsal, Twist, GAGA-factor, Caudal and Bicoid in 2-3hr OreR D.mel embryos.
kipoi env create BPNet_Dmel_OreR_2to3hr_ZDTBCG
source activate kipoi-BPNet_Dmel_OreR_2to3hr_ZDTBCG
kipoi test BPNet_Dmel_OreR_2to3hr_ZDTBCG --source=kipoi
kipoi get-example BPNet_Dmel_OreR_2to3hr_ZDTBCG -o example
kipoi predict BPNet_Dmel_OreR_2to3hr_ZDTBCG \
--dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
-o '/tmp/BPNet_Dmel_OreR_2to3hr_ZDTBCG.example_pred.tsv'
# check the results
head '/tmp/BPNet_Dmel_OreR_2to3hr_ZDTBCG.example_pred.tsv'
kipoi env create BPNet_Dmel_OreR_2to3hr_ZDTBCG
source activate kipoi-BPNet_Dmel_OreR_2to3hr_ZDTBCG
import kipoi
model = kipoi.get_model('BPNet_Dmel_OreR_2to3hr_ZDTBCG')
pred = model.pipeline.predict_example(batch_size=4)
# Download example dataloader kwargs
dl_kwargs = model.default_dataloader.download_example('example')
# Get the dataloader and instantiate it
dl = model.default_dataloader(**dl_kwargs)
# get a batch iterator
batch_iterator = dl.batch_iter(batch_size=4)
for batch in batch_iterator:
# predict for a batch
batch_pred = model.predict_on_batch(batch['inputs'])
pred = model.pipeline.predict(dl_kwargs, batch_size=4)
library(reticulate)
kipoi <- import('kipoi')
model <- kipoi$get_model('BPNet_Dmel_OreR_2to3hr_ZDTBCG')
predictions <- model$pipeline$predict_example()
# Download example dataloader kwargs
dl_kwargs <- model$default_dataloader$download_example('example')
# Get the dataloader
dl <- model$default_dataloader(dl_kwargs)
# get a batch iterator
it <- dl$batch_iter(batch_size=4)
# predict for a batch
batch <- iter_next(it)
model$predict_on_batch(batch$inputs)
pred <- model$pipeline$predict(dl_kwargs, batch_size=4)
Not available yet
Not available yet
Not available yet
Not available yet
Not available yet
https://apptainer.org/docs/user/main/quick_start.html#quick-installation-steps
Not available yet
Targets
Dictionary of numpy arrays
Name: Bcd
Doc: Strand-specific ChIP-nexus data for Bicoid.
Name: Cad
Doc: Strand-specific ChIP-nexus data for Caudal.
Name: Dl
Doc: Strand-specific ChIP-nexus data for Dorsal.
Name: GAF
Doc: Strand-specific ChIP-nexus data for GAGA-factor.
Name: Twi
Doc: Strand-specific ChIP-nexus data for Twist.
Name: Zld
Doc: Strand-specific ChIP-nexus data for Zelda.
Defined as: kipoiseq.dataloaders.SeqIntervalDl
Doc: Dataloader for a combination of fasta and tab-delimited input files such as bed files. The dataloader extracts regions from the fasta file as defined in the tab-delimited `intervals_file` and converts them into one-hot encoded format. Returned sequences are of the type np.array with the shape inferred from the arguments: `alphabet_axis` and `dummy_axis`.
Authors: Ziga Avsec , Roman Kreuzhuber
Type: Dataset
License: MIT
Arguments
intervals_file : bed3+<columns> file path containing intervals + (optionally) labels
fasta_file : Reference genome FASTA file path.
num_chr_fasta (optional): True, the the dataloader will make sure that the chromosomes don't start with chr.
use_strand (optional): reverse-complement fasta sequence if bed file defines negative strand. Requires a bed6 file
- python=3.7
- bioconda::pybedtools>=0.7.10
- bioconda::bedtools>=2.27.1
- bioconda::pybigwig>=0.3.10
- bioconda::pysam>=0.14.0
- bioconda::genomelake==0.1.4
- pytorch::pytorch=1.4.0
- cython=0.29.22
- h5py=2.10.0
- numpy=1.19.2
- pandas=1.1.5
- fastparquet=0.5.0
- python-snappy=0.6.0
- pip=21.0.1
- nb_conda=2.2.1
- tensorflow=1.14
- keras=2.2.4
- git+https://github.com/kundajelab/DeepExplain.git
- git+https://github.com/kundajelab/bpnet.git@0cb7277b736260f8b4084c9b0c5bd62b9edb5266
- protobuf==3.20
- bioconda::pybedtools
- bioconda::pyfaidx
- bioconda::pyranges
- numpy
- pandas
- kipoiseq