Basset
Type: pytorch
Postprocessing: variant_effects
Trained on: From 2,071,886 total sites, 71,886 randomly reserved for testing and 70,000 for validation, leaving 1,930,000 for training.
This is the Basset model published by David Kelley converted to pytorch by Roman Kreuzhuber. It categorically predicts probabilities of accesible genomic regions in 164 cell types (ENCODE project and Roadmap Epigenomics Consortium). Data was generated using DNAse-seq. The sequence length the model uses as input is 600bp. The input of the tensor has to be (N, 4, 600, 1) for N samples, 600bp window size and 4 nucleotides. Per sample, 164 probabilities of accessible chromatin will be predicted.
kipoi env create Basset
source activate kipoi-Basset
kipoi test Basset --source=kipoi
kipoi get-example Basset -o example
kipoi predict Basset \
--dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
-o '/tmp/Basset.example_pred.tsv'
# check the results
head '/tmp/Basset.example_pred.tsv'
kipoi env create Basset
source activate kipoi-Basset
import kipoi
model = kipoi.get_model('Basset')
pred = model.pipeline.predict_example(batch_size=4)
# Download example dataloader kwargs
dl_kwargs = model.default_dataloader.download_example('example')
# Get the dataloader and instantiate it
dl = model.default_dataloader(**dl_kwargs)
# get a batch iterator
batch_iterator = dl.batch_iter(batch_size=4)
for batch in batch_iterator:
# predict for a batch
batch_pred = model.predict_on_batch(batch['inputs'])
pred = model.pipeline.predict(dl_kwargs, batch_size=4)
library(reticulate)
kipoi <- import('kipoi')
model <- kipoi$get_model('Basset')
predictions <- model$pipeline$predict_example()
# Download example dataloader kwargs
dl_kwargs <- model$default_dataloader$download_example('example')
# Get the dataloader
dl <- model$default_dataloader(dl_kwargs)
# get a batch iterator
it <- dl$batch_iter(batch_size=4)
# predict for a batch
batch <- iter_next(it)
model$predict_on_batch(batch$inputs)
pred <- model$pipeline$predict(dl_kwargs, batch_size=4)
docker pull kipoi/kipoi-docker:sharedpy3keras2tf2-slim
docker pull kipoi/kipoi-docker:sharedpy3keras2tf2
docker run -it kipoi/kipoi-docker:sharedpy3keras2tf2-slim
docker run kipoi/kipoi-docker:sharedpy3keras2tf2-slim kipoi test Basset --source=kipoi
# Create an example directory containing the data
mkdir -p $PWD/kipoi-example
# You can replace $PWD/kipoi-example with a different absolute path containing the data
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:sharedpy3keras2tf2-slim \
kipoi get-example Basset -o /app/example
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:sharedpy3keras2tf2-slim \
kipoi predict Basset \
--dataloader_args='{'intervals_file': '/app/example/intervals_file', 'fasta_file': '/app/example/fasta_file'}' \
-o '/app/Basset.example_pred.tsv'
# check the results
head $PWD/kipoi-example/Basset.example_pred.tsv
https://apptainer.org/docs/user/main/quick_start.html#quick-installation-steps
kipoi get-example Basset -o example
kipoi predict Basset \
--dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
-o 'Basset.example_pred.tsv' \
--singularity
# check the results
head Basset.example_pred.tsv
Defined as: kipoiseq.dataloaders.SeqIntervalDl
Doc: Dataloader for a combination of fasta and tab-delimited input files such as bed files. The dataloader extracts regions from the fasta file as defined in the tab-delimited `intervals_file` and converts them into one-hot encoded format. Returned sequences are of the type np.array with the shape inferred from the arguments: `alphabet_axis` and `dummy_axis`.
Authors: Ziga Avsec , Roman Kreuzhuber
Type: Dataset
License: MIT
Arguments
intervals_file : bed3+<columns> file path containing intervals + (optionally) labels
fasta_file : Reference genome FASTA file path.
num_chr_fasta (optional): True, the the dataloader will make sure that the chromosomes don't start with chr.
label_dtype (optional): None, datatype of the task labels taken from the intervals_file. Example: str, int, float, np.float32
use_strand (optional): reverse-complement fasta sequence if bed file defines negative strand. Requires a bed6 file
ignore_targets (optional): if True, don't return any target variables
- python=3.8
- h5py
- pytorch::pytorch
- pip=22.0.4
- bioconda::pysam=0.17
- cython
- kipoi
- kipoiseq
- bioconda::pybedtools
- bioconda::pyfaidx
- bioconda::pyranges
- numpy
- pandas
- kipoiseq