DeepLiver/DeepLiver_Accessibility
Authors: Carmen Bravo , Stein Aerts
License: Other / Non-commercial (see LICENSE.txt)
Contributed by: Carmen Bravo , Stein Aerts
Cite as:
Bravo
González-Blas
Carmen.
(2022).
Enhancer
grammar
of
liver
cell
types
and
hepatocyte
zonation
states.
https://doi.org/10.1101/2022.12.08.519575
Type: None
Postprocessing: None
Trained on: Accessible genomic sites in the mouse liver grouped into regulatory topics inferred from scATAC-seq data.
Specialized deep learning model to predict region accessibility (as topics) across cell types in the mouse liver.
kipoi env create DeepLiver/DeepLiver_Accessibility
source activate kipoi-DeepLiver__DeepLiver_Accessibility
kipoi test DeepLiver/DeepLiver_Accessibility --source=kipoi
kipoi get-example DeepLiver/DeepLiver_Accessibility -o example
kipoi predict DeepLiver/DeepLiver_Accessibility \
--dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
-o '/tmp/DeepLiver|DeepLiver_Accessibility.example_pred.tsv'
# check the results
head '/tmp/DeepLiver|DeepLiver_Accessibility.example_pred.tsv'
kipoi env create DeepLiver/DeepLiver_Accessibility
source activate kipoi-DeepLiver__DeepLiver_Accessibility
import kipoi
model = kipoi.get_model('DeepLiver/DeepLiver_Accessibility')
pred = model.pipeline.predict_example(batch_size=4)
# Download example dataloader kwargs
dl_kwargs = model.default_dataloader.download_example('example')
# Get the dataloader and instantiate it
dl = model.default_dataloader(**dl_kwargs)
# get a batch iterator
batch_iterator = dl.batch_iter(batch_size=4)
for batch in batch_iterator:
# predict for a batch
batch_pred = model.predict_on_batch(batch['inputs'])
pred = model.pipeline.predict(dl_kwargs, batch_size=4)
library(reticulate)
kipoi <- import('kipoi')
model <- kipoi$get_model('DeepLiver/DeepLiver_Accessibility')
predictions <- model$pipeline$predict_example()
# Download example dataloader kwargs
dl_kwargs <- model$default_dataloader$download_example('example')
# Get the dataloader
dl <- model$default_dataloader(dl_kwargs)
# get a batch iterator
it <- dl$batch_iter(batch_size=4)
# predict for a batch
batch <- iter_next(it)
model$predict_on_batch(batch$inputs)
pred <- model$pipeline$predict(dl_kwargs, batch_size=4)
Not available yet
Not available yet
Not available yet
Not available yet
Not available yet
https://apptainer.org/docs/user/main/quick_start.html#quick-installation-steps
Not available yet
- python=3.7
- numpy==1.19.5
- h5py==2.10.0
- tensorflow==1.15.0
- protobuf==3.20
- python=3.7
- bioconda::pybedtools
- bioconda::pysam
- bioconda::pyfaidx
- numpy
- pandas
- kipoiseq