DeepLiver/DeepLiver_Activity
Authors: Carmen Bravo , Stein Aerts
License: Other / Non-commercial (see LICENSE.txt)
Contributed by: Carmen Bravo , Stein Aerts
Cite as: 
  
  
      
  
    Bravo
  
    
      
  
    González-Blas
  
    
      
  
    Carmen.
  
    
      
  
    (2022).
  
    
      
  
    Enhancer
  
    
      
  
    grammar
  
    
      
  
    of
  
    
      
  
    liver
  
    
      
  
    cell
  
    
      
  
    types
  
    
      
  
    and
  
    
      
  
    hepatocyte
  
    
      
  
    zonation
  
    
      
  
    states.
  
    
      
  
    https://doi.org/10.1101/2022.12.08.519575
  
    
  
Type: None
Postprocessing: None
Trained on: Binarized enhancer activity measured in 12K enhancers in the mouse liver using MPRA.
Specialized deep learning model to predict hepatocyte enhancer activity in the mouse liver.
kipoi env create DeepLiver/DeepLiver_Activity
source activate kipoi-DeepLiver__DeepLiver_Activity
	
      kipoi test DeepLiver/DeepLiver_Activity --source=kipoi
	
      kipoi get-example DeepLiver/DeepLiver_Activity -o example
kipoi predict DeepLiver/DeepLiver_Activity \
  --dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
  -o '/tmp/DeepLiver|DeepLiver_Activity.example_pred.tsv'
# check the results
head '/tmp/DeepLiver|DeepLiver_Activity.example_pred.tsv'
	
      kipoi env create DeepLiver/DeepLiver_Activity
source activate kipoi-DeepLiver__DeepLiver_Activity
	
      import kipoi
model = kipoi.get_model('DeepLiver/DeepLiver_Activity')
	
      pred = model.pipeline.predict_example(batch_size=4)
	
      # Download example dataloader kwargs
dl_kwargs = model.default_dataloader.download_example('example')
# Get the dataloader and instantiate it
dl = model.default_dataloader(**dl_kwargs)
# get a batch iterator
batch_iterator = dl.batch_iter(batch_size=4)
for batch in batch_iterator:
    # predict for a batch
    batch_pred = model.predict_on_batch(batch['inputs'])
	
      pred = model.pipeline.predict(dl_kwargs, batch_size=4)
	
      library(reticulate)
kipoi <- import('kipoi')
model <- kipoi$get_model('DeepLiver/DeepLiver_Activity')
	
      predictions <- model$pipeline$predict_example()
	
      # Download example dataloader kwargs
dl_kwargs <- model$default_dataloader$download_example('example')
# Get the dataloader
dl <- model$default_dataloader(dl_kwargs)
# get a batch iterator
it <- dl$batch_iter(batch_size=4)
# predict for a batch
batch <- iter_next(it)
model$predict_on_batch(batch$inputs)
	
      pred <- model$pipeline$predict(dl_kwargs, batch_size=4)
	
      Not available yet
	
      Not available yet
	
      Not available yet
	
      Not available yet
	
      Not available yet
	
      https://apptainer.org/docs/user/main/quick_start.html#quick-installation-steps
	
      Not available yet
	
      - python=3.7
 - numpy==1.19.5
 - h5py==2.10.0
 
- tensorflow>=1.15.0
 - protobuf==3.20
 
- python=3.7
 - bioconda::pybedtools
 - bioconda::pysam
 - bioconda::pyfaidx
 - numpy
 - pandas
 
- kipoiseq