DeepLiver/DeepLiver_Zonation
Authors: Carmen Bravo , Stein Aerts
License: Other / Non-commercial (see LICENSE.txt)
Contributed by: Carmen Bravo , Stein Aerts
Cite as:
Bravo
González-Blas
Carmen.
(2022).
Enhancer
grammar
of
liver
cell
types
and
hepatocyte
zonation
states.
https://doi.org/10.1101/2022.12.08.519575
Type: None
Postprocessing: None
Trained on: Accessible genomic sites in hepatocytes in the mouse liver grouped based on the zonation patterns (generally accessible, pericentral or periportal).
Specialized deep learning model to predict zonated region accessibility patterns across hepatocytes in the mouse liver.
kipoi env create DeepLiver/DeepLiver_Zonation
source activate kipoi-DeepLiver__DeepLiver_Zonation
kipoi test DeepLiver/DeepLiver_Zonation --source=kipoi
kipoi get-example DeepLiver/DeepLiver_Zonation -o example
kipoi predict DeepLiver/DeepLiver_Zonation \
--dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
-o '/tmp/DeepLiver|DeepLiver_Zonation.example_pred.tsv'
# check the results
head '/tmp/DeepLiver|DeepLiver_Zonation.example_pred.tsv'
kipoi env create DeepLiver/DeepLiver_Zonation
source activate kipoi-DeepLiver__DeepLiver_Zonation
import kipoi
model = kipoi.get_model('DeepLiver/DeepLiver_Zonation')
pred = model.pipeline.predict_example(batch_size=4)
# Download example dataloader kwargs
dl_kwargs = model.default_dataloader.download_example('example')
# Get the dataloader and instantiate it
dl = model.default_dataloader(**dl_kwargs)
# get a batch iterator
batch_iterator = dl.batch_iter(batch_size=4)
for batch in batch_iterator:
# predict for a batch
batch_pred = model.predict_on_batch(batch['inputs'])
pred = model.pipeline.predict(dl_kwargs, batch_size=4)
library(reticulate)
kipoi <- import('kipoi')
model <- kipoi$get_model('DeepLiver/DeepLiver_Zonation')
predictions <- model$pipeline$predict_example()
# Download example dataloader kwargs
dl_kwargs <- model$default_dataloader$download_example('example')
# Get the dataloader
dl <- model$default_dataloader(dl_kwargs)
# get a batch iterator
it <- dl$batch_iter(batch_size=4)
# predict for a batch
batch <- iter_next(it)
model$predict_on_batch(batch$inputs)
pred <- model$pipeline$predict(dl_kwargs, batch_size=4)
Not available yet
Not available yet
Not available yet
Not available yet
Not available yet
https://apptainer.org/docs/user/main/quick_start.html#quick-installation-steps
Not available yet
- python=3.7
- numpy==1.19.5
- h5py==2.10.0
- tensorflow>=1.15.0
- protobuf==3.20
- python=3.7
- bioconda::pybedtools
- bioconda::pysam
- bioconda::pyfaidx
- numpy
- pandas
- kipoiseq