HAL
Model from Rosenberg et al: Learning the Sequence Determinants of Alternative Splicing from Millions of Random Sequences
Create a new conda environment with all dependencies installed
kipoi env create HAL
source activate kipoi-HAL
Test the model
kipoi test HAL --source=kipoi
Make a prediction
kipoi get-example HAL -o example
kipoi predict HAL \
--dataloader_args='{"fasta_file": "example/fasta_file", "gtf_file": "example/gtf_file"}' \
-o '/tmp/HAL.example_pred.tsv'
# check the results
head '/tmp/HAL.example_pred.tsv'
Create a new conda environment with all dependencies installed
kipoi env create HAL
source activate kipoi-HAL
Get the model
import kipoi
model = kipoi.get_model('HAL')
Make a prediction for example files
pred = model.pipeline.predict_example(batch_size=4)
Use dataloader and model separately
# Download example dataloader kwargs
dl_kwargs = model.default_dataloader.download_example('example')
# Get the dataloader and instantiate it
dl = model.default_dataloader(**dl_kwargs)
# get a batch iterator
batch_iterator = dl.batch_iter(batch_size=4)
for batch in batch_iterator:
# predict for a batch
batch_pred = model.predict_on_batch(batch['inputs'])
Make predictions for custom files directly
pred = model.pipeline.predict(dl_kwargs, batch_size=4)
Get the model
library(reticulate)
kipoi <- import('kipoi')
model <- kipoi$get_model('HAL')
Make a prediction for example files
predictions <- model$pipeline$predict_example()
Use dataloader and model separately
# Download example dataloader kwargs
dl_kwargs <- model$default_dataloader$download_example('example')
# Get the dataloader
dl <- model$default_dataloader(dl_kwargs)
# get a batch iterator
it <- dl$batch_iter(batch_size=4)
# predict for a batch
batch <- iter_next(it)
model$predict_on_batch(batch$inputs)
Make predictions for custom files directly
pred <- model$pipeline$predict(dl_kwargs, batch_size=4)
Get the docker image
docker pull kipoi/kipoi-docker:sharedpy3keras2tf2-slim
Get the full sized docker image
docker pull kipoi/kipoi-docker:sharedpy3keras2tf2
Get the activated conda environment inside the container
docker run -it kipoi/kipoi-docker:sharedpy3keras2tf2-slim
Test the model
docker run kipoi/kipoi-docker:sharedpy3keras2tf2-slim kipoi test HAL --source=kipoi
Make prediction for custom files directly
# Create an example directory containing the data
mkdir -p $PWD/kipoi-example
# You can replace $PWD/kipoi-example with a different absolute path containing the data
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:sharedpy3keras2tf2-slim \
kipoi get-example HAL -o /app/example
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:sharedpy3keras2tf2-slim \
kipoi predict HAL \
--dataloader_args='{'fasta_file': '/app/example/fasta_file', 'gtf_file': '/app/example/gtf_file'}' \
-o '/app/HAL.example_pred.tsv'
# check the results
head $PWD/kipoi-example/HAL.example_pred.tsv
Install apptainer
https://apptainer.org/docs/user/main/quick_start.html#quick-installation-steps
Make prediction for custom files directly
kipoi get-example HAL -o example
kipoi predict HAL \
--dataloader_args='{"fasta_file": "example/fasta_file", "gtf_file": "example/gtf_file"}' \
-o 'HAL.example_pred.tsv' \
--singularity
# check the results
head HAL.example_pred.tsv
Dataloader
Arguments
MISO_AS (optional): Whether the given annotation file is MISO alternative splicing annotation. Default False.
fasta_file : Reference Genome sequence in fasta format
gtf_file : file path; Genome annotation GTF file
overhang (optional): Length of sequence overhang to take around splice junction
Model dependencies
conda:
- bioconda::bedtools=2.30.0
- cython=0.29.24
- bioconda::cyvcf2=0.30.11
- h5py=2.10.0
- bioconda::maxentpy=0.0.1
- numpy=1.21.1
- pandas=1.4.2
- pip=21.2.4
- bioconda::pybedtools=0.8.2
- bioconda::pybigwig=0.3.18
- bioconda::pysam=0.17.0
- python=3.8
- pytorch=1.4.0
- scikit-learn=1.0.2
- scipy=1.7.0
- bioconda::sorted_nearest=0.0.33
pip:
- keras
- tensorflow
- kipoi
- kipoi-conda
- kipoi-interpret
- kipoi-utils
- kipoi-veff
- kipoiseq
- pyfaidx==0.6.4
- pyvcf==0.4.3
- protobuf==3.20
Dataloader dependencies
conda:
- python=3.8
- bioconda::pysam=0.17.0
pip: