CpGenie/MCF_10A_ENCSR000DEV
License: Apache License v2
Contributed by: Roman Kreuzhuber
Cite as: https://doi.org/10.1093/nar/gkx177
Type: keras
Postprocessing: None
Trained on: RRBS (restricted representation bisulfite sequencing) data from ENCODE (https://www.encodeproject.org/)
Abstract: DNA methylation plays a crucial role in the establishment of tissue-specific gene expression and the regulation of key biological processes. However, our present inability to predict the effect of genome sequence variation on DNA methylation precludes a comprehensive assessment of the consequences of non-coding variation. We introduce CpGenie, a sequence-based framework that learns a regulatory code of DNA methylation using a deep convolutional neural network and uses this network to predict the impact of sequence variation on proximal CpG site DNA methylation. CpGenie produces allele-specific DNA methylation prediction with single-nucleotide sensitivity that enables accurate prediction of methylation quantitative trait loci (meQTL). We demonstrate that CpGenie prioritizes validated GWAS SNPs, and contributes to the prediction of functional non-coding variants, including expression quantitative trait loci (eQTL) and disease-associated mutations. CpGenie is publicly available to assist in identifying and interpreting regulatory non-coding variants.
kipoi env create CpGenie
source activate kipoi-CpGenie
kipoi test CpGenie/MCF_10A_ENCSR000DEV --source=kipoi
kipoi get-example CpGenie/MCF_10A_ENCSR000DEV -o example
kipoi predict CpGenie/MCF_10A_ENCSR000DEV \
--dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
-o '/tmp/CpGenie|MCF_10A_ENCSR000DEV.example_pred.tsv'
# check the results
head '/tmp/CpGenie|MCF_10A_ENCSR000DEV.example_pred.tsv'
kipoi env create CpGenie
source activate kipoi-CpGenie
import kipoi
model = kipoi.get_model('CpGenie/MCF_10A_ENCSR000DEV')
pred = model.pipeline.predict_example(batch_size=4)
# Download example dataloader kwargs
dl_kwargs = model.default_dataloader.download_example('example')
# Get the dataloader and instantiate it
dl = model.default_dataloader(**dl_kwargs)
# get a batch iterator
batch_iterator = dl.batch_iter(batch_size=4)
for batch in batch_iterator:
# predict for a batch
batch_pred = model.predict_on_batch(batch['inputs'])
pred = model.pipeline.predict(dl_kwargs, batch_size=4)
library(reticulate)
kipoi <- import('kipoi')
model <- kipoi$get_model('CpGenie/MCF_10A_ENCSR000DEV')
predictions <- model$pipeline$predict_example()
# Download example dataloader kwargs
dl_kwargs <- model$default_dataloader$download_example('example')
# Get the dataloader
dl <- model$default_dataloader(dl_kwargs)
# get a batch iterator
it <- dl$batch_iter(batch_size=4)
# predict for a batch
batch <- iter_next(it)
model$predict_on_batch(batch$inputs)
pred <- model$pipeline$predict(dl_kwargs, batch_size=4)
docker pull kipoi/kipoi-docker:sharedpy3keras1.2-slim
docker pull kipoi/kipoi-docker:sharedpy3keras1.2
docker run -it kipoi/kipoi-docker:sharedpy3keras1.2-slim
docker run kipoi/kipoi-docker:sharedpy3keras1.2-slim kipoi test CpGenie/MCF_10A_ENCSR000DEV --source=kipoi
# Create an example directory containing the data
mkdir -p $PWD/kipoi-example
# You can replace $PWD/kipoi-example with a different absolute path containing the data
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:sharedpy3keras1.2-slim \
kipoi get-example CpGenie/MCF_10A_ENCSR000DEV -o /app/example
docker run -v $PWD/kipoi-example:/app/ kipoi/kipoi-docker:sharedpy3keras1.2-slim \
kipoi predict CpGenie/MCF_10A_ENCSR000DEV \
--dataloader_args='{'intervals_file': '/app/example/intervals_file', 'fasta_file': '/app/example/fasta_file'}' \
-o '/app/CpGenie_MCF_10A_ENCSR000DEV.example_pred.tsv'
# check the results
head $PWD/kipoi-example/CpGenie_MCF_10A_ENCSR000DEV.example_pred.tsv
https://apptainer.org/docs/user/main/quick_start.html#quick-installation-steps
kipoi get-example CpGenie/MCF_10A_ENCSR000DEV -o example
kipoi predict CpGenie/MCF_10A_ENCSR000DEV \
--dataloader_args='{"intervals_file": "example/intervals_file", "fasta_file": "example/fasta_file"}' \
-o 'CpGenie_MCF_10A_ENCSR000DEV.example_pred.tsv' \
--singularity
# check the results
head CpGenie_MCF_10A_ENCSR000DEV.example_pred.tsv
Defined as: kipoiseq.dataloaders.SeqIntervalDl
Doc: Dataloader for a combination of fasta and tab-delimited input files such as bed files. The dataloader extracts regions from the fasta file as defined in the tab-delimited `intervals_file` and converts them into one-hot encoded format. Returned sequences are of the type np.array with the shape inferred from the arguments: `alphabet_axis` and `dummy_axis`.
Authors: Ziga Avsec , Roman Kreuzhuber
Type: Dataset
License: MIT
Arguments
intervals_file : bed3+<columns> file path containing intervals + (optionally) labels
fasta_file : Reference genome FASTA file path.
num_chr_fasta (optional): True, the the dataloader will make sure that the chromosomes don't start with chr.
label_dtype (optional): None, datatype of the task labels taken from the intervals_file. Example: str, int, float, np.float32
use_strand (optional): reverse-complement fasta sequence if bed file defines negative strand. Requires a bed6 file
ignore_targets (optional): if True, don't return any target variables
- python=3.7
- pysam=0.15.3
- pip=20.2.4
- h5py==2.10.0
- tensorflow==1.15
- keras==1.2.2
- protobuf==3.20
- bioconda::pybedtools
- bioconda::pyfaidx
- bioconda::pyranges
- numpy
- pandas
- kipoiseq